
9.2, 9.3 WS/Quiz solutions

1 Problem 1

1. Find the following limits:

(a) limn→∞
5/n−3n2

2/n−4n2 (b) limk→∞(2k)3/k (c) limn→∞ n tan(π/n)

(a) limn→∞
5/n−3n2

2/n−4n2 = limn→∞
−3n2

−4n2 = 3/4 since limn→∞ 5/n = 0 = limn→∞ 2/n. We also could have

applied L’Hopital’s rule twice to the form ∞/∞.

(b) limk→∞(2k)3/k: Note that limk→∞ 21/k = 1 = limk→∞ k1/k from our examples, so

lim
k→∞

(2k)1/k = lim
k→∞

21/k · k1/k = 1 = lim
k→∞

21/k · lim
k→∞

k1/k

by properties of finite limits. Then, since (2k)3/k = (21/k · k1/k)3, again by properties of finite limits, we
have

lim
k→∞

(2k)3/k = ( lim
k→∞

21/k · k1/k)3 = 13 = 1

(c) limn→∞ n tan(π/n): here we have an indeterminate form ∞· 0. We can use a trick here with the fact
that limx→0 sin(x)/x = 1:

lim
n→∞

n tan(π/n) = lim
n→∞

tan(π/n)

1/n
= lim
n→∞

sin(π/n)

1/n · cos(π/n)
(1)

= lim
n→∞

π · sin(π/n)

π/n · cos(π/n)
(2)

= lim
m→0

sin(m)/m · lim
n→∞

π/ cos(π/n) (3)

= 1 · π/1 = π (4)

Where we multiplied by π/π = 1 in the limit to go from (1)→ (2). We could have tried using L’Hopital’s

rule for 0/0 on tan(π/n)
1/n but it would get hairy.

2 Problem 2

2. Let a0 = 1, a1 = 1 + 1/3, a2 = 1 + 1/3 + 1/9, a3 = 1 + 1/3 + 1/9 + 1/27, and so on. For an ar-
bitrary positive integer n, write down the formula for an. Then find limn→∞ an (hint: use the formula
1− rn+1 = (1 + r + r2 + ...+ rn)(1− r) for real r and for n = 1, 2, 3, ..).

Note that we have a2 = 1+(1/3)+(1/3)2, a3 = 1+(1/3)+(1/3)2+(1/3)3, so an = 1+(1/3)+ ...+(1/3)n.
Then, by the formula

1− (1/3)n+1 = (1 + (1/3) + ...+ (1/3)n)(1− (1/3)) = an · 2/3

we have an = 3/2(1− (1/3)n+1). Since limn→∞(1/3)n = 0, we have that

lim
n→∞

an = lim
n→∞

3/2(1− (1/3)n+1) = 3/2



3 Problem 3

You deposit $100 in a savings account that pays 5% interest compounded annually. Thus after 1 year there
is the original $100 plus the interest 100(0.05) dollars in the account, that is, there are 100+100(0.05) dollars
in the account.

(a) Show that after 2 years there are 100(1 + 0.05)2 dollars in the account.

Let Y1 be the amount in the account after one year, so Y1 = 100 + 100(0.05). The amount in the account
after 2 years, Y2, is the amount from Y1 plus 5% of that amount, i.e. 5% of Y1 = 100 + 100(0.05), which is
0.05(100 + 100(0.05)). Then we have

Y2 = Y1 + 0.05 · Y1 = 100 + 100(0.05) + 0.05(100 + 100(0.05)) (5)

= 100 + 100(0.05) + 100(0.05) + 100(0.05)2 (6)

= 100 + 2 · 100(0.05) + 100(0.05)2 (7)

= 100(1 + 2(0.05) + 0.052) (8)

= 100(1 + 0.05)2 (9)

and we’re done.

(b) Let n be an arbitrary positive integer. Find a formula for the amount in the account after n years.

Well, in general, the amount Yn in the account after n years is the amount in the account from the
previous year (i.e. after n− 1 years) plus 5% interest of that amount. Thus

Yn = Yn−1 + 0.05Yn−1 = Yn−1(1.05).

Since
Yn−1 = Yn−2(1.05),

we have
Yn = Yn−1(1.05) = Yn−2(1.05)2,

and in general
Yn = Yn−i(1.05)i

for any i ≤ n. For i = n, then, we have Yn = Y0(1.05)n, where Y0 = 100 is the initial amount in the account.

Thus a formula for the amount in the account after n years is

Yn = 100(1.05)n.

(c) Determine how many years it would take for the amount in the account to reach $200.



We need to find the first year that Yn ≥ 200, i.e. find n so that 100(1.05)n ≥ 200, so (1.05)n ≥ 2.

Since ln is an increasing function, we have ln(1.05n) ≥ ln 2, so n ln(1.05) ≥ ln 2. Then

n ≥ ln 2/ ln(1.05) ≈ 14.2.

Since n is an integer, we’ll have n = 15 years is the first year the account will reach $200.

4 Problem 4

When a superball is dropped onto a hardwood floor, it bounces up to approximately 80% of its original
height. Suppose that the ball is dropped initially from a height of 5m above the floor, and let bn = the
maximum height of the n’th bounce.

(a) Evaluate b1, b2, b3.

The max height of the first bounce, b1, will be 80% of 5m, i.e. b1 = 0.8 · 5 = 4 meters.

The max height of the second bounce, b2, will be 80% of the max height of the first bounce. Thus
b2 = 0.8 · b1 = 0.8 · 4 = 3.2 meters

Similarly, b3 = 0.8 · b2 = 0.8 · 3.2 = 2.4 meters.

(b) Prove that limn→∞ bn = 0

Note that
bn = 0.8 · bn−1 = 0.8 · (0.8 · bn−2) = 0.82 · bn−2 = ... = 0.8nb0 = 0.8n · 5

so limn→∞ bn = limn→∞ 0.8n · 5. Note limn→∞ 0.8n = 0 since 0.8 < 1, and limn→∞ 5 = 5. Thus
limn→∞ 0.8n · 5 = limn→∞ 0.8n · limn→∞ 5 = 0 · 5 = 0 by properties of finite limits. Thus limn→∞ bn = 0.

5 Problem 5

(a) Suppose that limn→∞ an = L. Tell in a complete sentence why limn→∞ an+1 = L

(b) Suppose that limn→∞ an = 3. Is it necessarily true that limn→∞
an+1

an
= 1? Explain why it is true,

or why it is not necessarily true (hint: do we know limn→∞
an
bn

?)

(c) Suppose limn→∞ an = 0 and limn→∞ bn = π. Prove that limn→∞ anbn = 0.

(a) Suppose that limn→∞ an = L. Tell in a complete sentence why limn→∞ an+1 = L

Note that the sequence {an+1}n≥1 is a2, a3, ..., which is {an}n≥1 without the first term: so

lim
n→∞

an+1 = lim
n→∞

an = L



since the limit does not depend on the first term of the sequence a1.

(b) Suppose that limn→∞ an = 3. Is it necessarily true that limn→∞
an+1

an
= 1? Explain why it is true,

or why it is not necessarily true (hint: do we know limn→∞
an
bn

?)

It is true since if limn→∞ an and limn→∞ bn 6= 0 both are finite, limn→∞
an
bn

= limn→∞ an
limn→∞ bn

. Since
limn→∞ an = 3 6= 0, this property of finite limits applies:

lim
n→∞

an+1

an
=

limn→∞ an+1

limn→∞ an
= 3/3 = 1.

(c) Suppose limn→∞ an = 0 and limn→∞ bn = π. Prove that limn→∞ anbn = 0.

Again, by properties of finite limits, if limn→∞ an = 0, limn→∞ bn = π, then

lim
n→∞

anbn = lim
n→∞

an · lim
n→∞

bn = 0 · π = 0.

6 Problem 6

(a) Show that

ln(n+ 1)− lnn =

∫ n+1

1

1

t
dt −

∫ n

1

1

t
dt (10)

=

∫ n+1

n

1

t
dt ≥ 1

n+ 1
(11)

Note that for any integral,

(max
[a,b]

f(x))(b− a) ≥ f(x)

∫ b

a

f(x) dx ≥ (min
[a,b]

f(x)) · (b− a)

since an integral represents the area under the graph of f : the area of the rectangle determined by the
minimum value of f on [a, b] and the length (b− a) of [a, b] is smaller than this total area.

Thus ∫ n+1

n

1

t
dt ≥ ( min

[n,n+1]
1/t) · (n+ 1− n) = 1/(n+ 1)

since 1/t is a decreasing function on (0,∞).

(b) Let an = 1 + 1
2 + ... + 1

n − lnn for n = 1, 2, .... Use (a) to show {an}∞n=1 is a decreasing sequence
(hint: show an − an+1 ≥ 0).

We show an − an+1 ≥ 0. Note

an−an+1 = [1+1/2+...+1/n−lnn]−[1+1/2+...+1/n+1/(n+1)−ln(n+1)] = ln(n+1)−ln(n)−1/(n+1).



We just showed ln(n + 1) − ln(n) ≥ 1/(n + 1), so we have ln(n + 1) − ln(n) − 1/(n + 1) ≥ 0. Thus
an − an+1 ≥ 0, so an ≥ an+1 and {an}n≥1 is a decreasing sequence.

(c) Using the left sum of
∫ n+1

1
1
t dt with partition {1, 2, ..., n+ 1}, show that 1 + 1

2 + ...+ 1
n ≥ ln(n+ 1).

The left sum of
∫ b
a
f dx on the partition (a = a0, ..., an = b) is f(a0)(a1 − a0) + ...+ f(an−1)(an − an−1),

so the left sum of
∫ n+1

1
1
t dt is

(1/1)(2− 1) + (1/2)(3− 2) + ...+ (1/n)(n+ 1− n) = 1 + 1/2 + ...+ 1/n

Also note that the left sum of a decreasing function is greater than the integral of the function on the
interval (a0, an). Thus, since 1/t is decreasing on (0,∞), we have

1 + 1/2 + ...+ (1/n) ≥
∫ n+1

1

1/t dt = [ln |t|]n+1
1 = ln(n+ 1)− ln 1 = ln(n+ 1)

Thus 1 + 1/2 + ...+ 1/n ≥ ln(n+ 1) and we’re done.

(d) Use (c) and the definition of an to show that an ≥ 0 for all n.

Note an = 1 + 1/2 + ...+ 1/n− lnn and since 1 + 1/2 + ...+ 1/n ≥ ln(n+ 1), we have

1 + 1/2 + ...+ 1/n− ln(n+ 1) ≥ 0

.

Note also that the natural logarithm is an increasing function, ln(n + 1) > lnn for all integers n > 0.
Thus an = 1 + 1/2 + ...+ 1/n− lnn > 1 + 1/2 + ...+ 1/n− ln(n+ 1) ≥ 0, so an is positive for all n.

(e) Use (b) and (d) to show that {an}∞n=1 converges to a number r (r ≈ 0.577216 and is known as the
Euler Mascheroni constant).

Since {an} is a decreasing sequence with an > 0 for all n, it converges by Theorem 9.6 in our book (a
bounded sequence that is either increasing or decreasing converges).

7 Quiz 9.2

Evaluate the limit as a number, ∞ or −∞:

(a) limk→∞
k
√

2k (b) limn→∞ ln( 1
n ) (c) limn→∞

n+3
n2−2

(a) limk→∞
k
√

2k

Note limk→∞
k
√

2 = 1 = limk→∞
k
√
k from our examples, so since k

√
2k = k

√
2 · k
√
k, we have

lim
k→∞

k
√

2k = lim
k→∞

k
√

2
k
√
k = lim

k→∞

k
√
k · lim

k→∞
k
√

2 = 1



by properties of finite limits.

(b) limn→∞ ln( 1
n )

This is the same as limx→0 ln(x) since limn→∞ 1/n = 0, and since the natural logarithm is continuous.
Since limx→0 lnx = −∞, we have limn→∞ ln(1/n) = −∞

(c) limn→∞
n+3
n2−2

We can ignore the constant terms since as n→∞ they make a negligible contribution (in general, with
polynomials, we can ignore lower degree terms in both the numerator and denominator):

lim
n→∞

n+ 3

n2 − 2
= lim
n→∞

n

n2
= lim
n→∞

1

n
= 0

.

(Bonus) Find the first 3 digits of
∫ 2

−2(x3 cos(x2 )− 1/2)
√

4− x2 dx

Expanding the integrand, we have∫ 2

−2
(x3 cos(

x

2
)− 1/2)

√
4− x2 dx =

∫ 2

−2
x3 cos(

x

2
)
√

4− x2 − 1/2
√

4− x2 dx

We’ll use the properties of function evenness and oddness: f is even if f(−x) = f(x) for all x in the
domain, and f is odd if f(−x) = −f(x) for all x in the domain. If f is even,

∫ a
−a f(x) = 2 ·

∫ a
0
f(x) dx and

if f is odd,
∫ a
−a f(x) dx = 0.

Note that x3 cos(x2 )
√

4− x2 is an odd function since it is the product of the even function cos(x2 )
√

4− x2
(since both cos(x/2) and

√
4− x2 are even) with the odd function x3. Thus it integrates to zero over the

symmetric interval [−2, 2]

We also know that 1
2

√
4− x2 is an even function, (i.e. so∫ 2

−2
−1

2

√
4− x2 dx = 2 ·

∫ 2

0

−1

2

√
4− x2 dx = −

∫ 2

0

√
4− x2 dx ,

which is the area of a quarter of the circle of radius 2 (the graph of
√

4− x2 is the semicircle of radius 2 in
the first and second quadrants, centered at the origin). The full area is π22 = 4π, so a quarter of this area is π.

Thus ∫ 2

−2
(x3 cos(

x

2
)− 1/2)

√
4− x2 dx = −π

which has first three digits -3.14.


